2
E. Simmon and A. Griesser

Use Case Based Testing to Improve Smart Grid Development
3

[image: image1.png]
Use Case Based Testing to Improve Smart Grid Development
Eric Simmona, Arthur Griesserb
aNational Institute of Standard and Technology, USA

bPrometheus Computing

Abstract. The United States Power delivery system is being updated with an intelligent, decision-making network. If designed correctly, this smart grid will ensure that the power grid can meet our needs in the coming century. This paper discusses a strategy for defining the goals, use cases and systems tests so this complex, system of systems, meets the needs of the stakeholders today and in the future.
Keywords. Smart grid, use cases, system design, goal modeling, testing, electricity delivery system

1 Introduction

Today we rely on electricity in virtually every aspect of our lives, from computers to medical equipment to environmental control systems. The tools and toys we use every day are powered from electricity delivered through the power grid. As our need for electricity grows we push the limits of this electricity power delivery system closer to its limits. The US grid in particular is being pushed hard as much of the infrastructure is old and the ability to build new generation and transmission/distribution systems is limited by environmental and political concerns.

The fusion of the power grid with a 21st century intelligence network will create a smart grid - a complex power delivery system optimized at many different levels. One important area of optimization is the interaction of traditional power sources with new mini and micro generations (including alternative energy sources). By using load-balancing algorithms to combine these disparate generators with energy storage systems to meet the demand requirements fewer new power generation and transmission systems will be needed even as demand increases. If constructed properly, these power control system can be scaled from microgrids to macrogrids and used with both existing and future systems. Other aspects include; the monitoring of the health of the grid and equipment so potential failures can be detected and avoided, the ability for the customer to work with the utilities so their needs are meet while suing fewer resources, and the enablement of new technologies such as advanced electric vehicles.

The US Department of Energy (DoE) lists seven high-level goals for smart grid [1]:

· Self-healing from power disturbance events

· Enabling active participation by consumers in demand response

· Operating resiliently against physical and cyber attack

· Providing power quality for 21st century needs

· Accommodating all generation and storage options

· Enabling new products, services, and markets

· Optimizing assets and operating efficiently
These goals represent what is desired in the modern electrical distribution network. By merging the power delivery network with an intelligent decision making network the smart grid has the potential to meet these desires. If, however, the smart grid is not implemented well, grid reliability could go down, costs could go up and this desired functionality may not work as expected.
The concept of the smart grid is quite simple; combine the traditional electricity delivery system with a modern computation system. The smart grid consists of power elements including sources (generation and storage), loads (energy using devices) and the connecting elements (transmission and distribution). The computing side consists of decision-making devices (intelligence) connected by a communications network. The power elements are connected to the computation network through sensors to measure grid parameters and controllers to cause changes to the power network as shown in Figure 1. It is worth noting that the smart grid favors a distributed approach to optimization with each piece contributing to the whole.
[image: image3.png]
Figure 1. UML Class Diagram showing Smart Grid Building Blocks
While this is a simple concept in theory, in practice it is not. There exist many legacy control systems that have been installed in limited areas over the years that can not be replaced immediately. These systems must be integrated together in a way that the system of systems can act as a whole. There are many different stakeholder including but not limited to; consumers, utilities, regulatory and policy agencies, technology providers and service providers. Each type of stakeholder has a differing (and often conflicting) perspective on the importance of specific smart grid functionalities.
It may be helpful to understand the complexity of the smart grid by dividing it into domains. Seven domains; bulk generation, transmission, distribution, customer, markets, utility operations, service provider have been identified in the NIST Interoperability Framework Document [2] are shown in Figure 2. Each domain has over the years created their own monitoring and control systems independent of the other domains and now these systems are required to interoperate. Even within a domain, different stakeholders often implemented proprietary systems that were not designed to interoperate with other stakeholders’ systems. While in an ideal world we could scrap the existing systems and start from scratch the reality is the smart grid must incorporate many legacy systems and more towards the future by building on the past.

Figure 2. Smart Grid Conceptual Reference Diagram
Achieving optimum complexity of the smart grid is an important goal. Too much complexity will lead to a fragile system that is difficult to create, maintain and use, too little complexity (oversimplification) and results in a system that does not meet the needs of the users.
To manage the complexity of the smart grid systems when designing the systems and standards that will make up the smart grid requires a rigorous systems design approach. By focusing on the goals of the smart grid, developing use cases based on these goals and deriving the system requirements we can be assured that this system of systems has the functionality to meet the needs of the stakeholders. Further, by developing tests directly from the use cases, the specifications laid out in the use cases that are linked directly to system goals. This close link between goals /requirements and final system testing means the systems will meet the goals of the stakeholders.
2 Goals

To ensure that high-level goals are met, bidirectional traceability between high level goals and use case requirements is necessary. This is not trivial: it isn’t immediately obvious how a goal like “Enabling active participation by consumers in demand response” should be manifested in the standards that drive vendor implementations. Typically analysts and domain experts work on requirements documents such as use cases with an eye toward the high level goals, but without any formal connection between those high level goals and the requirements documents. More likely than not, however, the requirements are not formalized and end up being small perturbations on legacy systems, that don’t optimally realize the new goals.

Understanding goals becomes even more important when different stakeholders have conflicting goals. Normally these differences are either ignored (until they result in much worse problems later), or contested to the point that both parties lose. Exposing these conflicts to scrutiny makes it possible to find win-win solutions that advance the interests of all parties. When goals are not explicit, the more astute or powerful party often benefits at the expense of the other. Usually this is not in the long-term interests of either party.

It would be desirable in an undertaking as complex and expensive as the Smart Grid, to be able to test ahead of time that high level goals really will be met once the system is completed, and conversely, that a given component really does support the system goals. This will result in a system that definitively meets the needs of the stakeholder without added complexity that increase cost and decrease usability.

This traceability between high level goals and system requirements can be accomplished by goal modeling [3]. The idea is to start with the highest level, most abstract goals the complex system is intended to realize. These goals are “decomposed” into more concrete goals that are easier to understand and easier to implement. These concrete goals are selected so that when they are satisfied, it’s clear that the higher level, more abstract goals are satisfied as well. Goals are recursively decomposed this way until sufficiently concrete goals are obtained. These final goals are supported not by smaller goals, but by processes whose execution will satisfy the goals. These processes consume some resources, and produce others. Each process is then described by requirements documents such as use cases, because goals by themselves are not enough to fully describe the functional and non-functional requirements of a process. Goals and the processes, information, and resources that support the goals can be represented in UML diagrams through the use of a profile that extends UML for this purpose. The profile contains “stereotypes” that further characterize elements in UML models. Stereotypes may confer extra information (called “tags”) on a model element, or change the element’s appearance. Deriving use cases through goal decomposition ensures that goals will be satisfied: there is no such guarantee if use cases are extracted from the legacy system already in place.

The fragment of a goal diagram shown in Figure 3[uses a small part of Eriksson & Penker’s UML extensions [4] to show the goal decomposition. It starts with two of the DoE high level goals (shown at the top of the figure) and goes down to a couple of the required processes (shown at the bottom of the figure.
[image: image2.wmf]<<QualGoal>>

Self-healing from

power disturbance

events

<<QualGoal>>

Optimizing assets

and operating

efficiently

<<QualGoal>>

Isolate

disturbance

<<QualGoal>>

Route Around

Disturbance

<<QualGoal>>

Device

redundancy

<<QualGoal>>

Knowledge of

Disturbance

<<QualGoal>>

Automatic

Switching

<<QualGoal>>

Path

Redundancy

<<QualGoal>>

Realtime

Measurements

<<QualGoal>>

Redundant

Systems

<<QualGoal>>

Minimal System

Resources

<<Process>>

Apply Param

Changes

<<Process>>

Operational

decision making

<<Information>>

Param Changes

Figure 4. Smart Grid Goal Diagram Fragment
In the diagram rectangles represent goals and dotted lines point from high-level goals to the more concrete goals that support the higher-level goals. For example, in this diagram, the abstract “self healing” goal requires the ability to disconnect (upstream and down) a section of the grid suffering a disturbance, and to re-establish power downstream of the afflicted section, using redundant assets. Likewise, in order to isolate a disturbance, is the location needs to be known, and to the ability to disconnect it form the rest of the grid is necessary. Skewed parallelograms represent information consumed and produced by processes (which are represented by thick arrows). In this case, automatic switching is proposed which requires a decision making process that takes into account measurements related to stability and power quality, as well as models of how changes will impact stability and power quality (omitted from the diagram). The resulting decisions are then used by another process that reconfigures the grid. These processes need to be further described by use cases. Dotted lines point from resources and processes to the goals that justify the resources and processes.
Solid lines with arrowheads show the flow of information into and out of processes. Solid lines without arrowheads denote conflicts between goals. This example shows a conflict between the “Redundant Systems” goal and the “Minimal System Resources” goals. This may seem like a problem at first, but by using the goal diagram to look at the higher level goals of self healing and optimizing assets, one can infer that a balance between redundant systems and minimal resources is to provide enough resources to support self healing, no more or less.
The bottom level of the goal decomposition shows the processes which are directly supported by specific uses. Goals have been an important part of use cases at least since Alistair Cockburn wrote his landmark paper Structuring Use Cases With Goals [5] and the goal diagram shows the link between the high level abstract goals, through the mid level concrete goals, to the processes which are linked to the use cases.
3 Use Cases

A use case is a requirements document that examines how a user (not necessarily human, called the “primary actor”) interacts with the system in order to obtain some result of value. Use cases therefore act as contracts (describing functional and non-functional requirements) between the users and developers of a system. Because systems typically must also satisfy stakeholders other than the primary actor (such as regulatory agencies), use cases often additionally take into account stakeholder needs.

Use cases are essential, because they ensure the system will actually deliver value to users. Without considering how something is used, and how users derive value, the development of high value products is haphazard, and products improve incrementally.

There is no single universally accepted model of what goes into a use case, and how it should be organized. Typically each effort settles on a template that defines what should go into a use case. Two generally agreed upon core components are textual descriptions of the functionality, and usage scenarios. Scenarios are composed of a sequence of steps carried out either by the primary actor or the system. Beyond this there is little agreement. Use cases and their templates may be spartan, with little more than the description and a scenario, or very detailed (“fully dressed”).

Many templates include a field for the primary actor’s goal. The goals of other stakeholders may also be discussed. For example, the Intelligrid template [6] (widely used for smart grid development) does not include any explicit fields for goals, and while the IntelliGrid Methodology for Developing Requirements for Energy Systems does suggest embedding the goal in the name, the optional nature of the suggestion means users may put the goal in the description, the narrative, or not even consider it at all. Looking at the names of the use cases listed in the EPRI Intelligrid Use Case repository [7], only a few have names that convey goals. Many have cryptic names like “BCTC – Operations to Planning v2” or “Consumer Portal Scenario P8” making it difficult to associate a use case with a specific goal.

Use case diagrams should be a compliment goal diagrams. Since use cases describe a primary actor working toward a goal, it might seem sensible to wrap all the goals in a goal diagram by use cases, and turn it into a use case diagram. This doesn’t quite work out. Firstly, many of the goals in a goal diagram represent the goals of stakeholders other than primary actors. These stakeholder goals would not appear in a use case diagram when use cases are interpreted as proxies for primary actor goals. Secondly, the concrete goals that drive use cases may be very far from the high level goals. You could wrap all the intermediate goals in use cases, and illustrate some of the relationships in use case diagrams, but that creates additional complexity that obfuscates the goal relationships. Use cases that wrap higher-level goals can serve as organizing tools, but they are too abstract to be of practical use as development contracts. In practice, when use case diagrams are your only view of goals, the higher-level goals end up being ignored. For example, the EPRI repository does not have a use case diagram showing the relationships among the use cases in the repository, much less connecting the use cases to higher-level goals.

To better understand what a use case is, it may help to consider what a use case isn’t. A use case should not specify a GUI or the internal design of the system. The use case should instead specify the required behavior of the system. Use cases are inputs for the GUI design and system design. The main reason for separating the use case from the design and GUI is that the design and GUI are driven by the required behavior. This separation is harder than it sounds. Since a use case is focused on how the user interacts with the system (whose tangible representation may be a GUI), it’s easy to start specifying the GUI, without even realizing it. Likewise it’s all too easy to prematurely specify the internal design of the system. Successfully maintaining this separation makes use cases more abstract (they can be realized by any appropriate GUI or design), and most people prefer to think concretely. This separation between requirements and design might sound like a nicety, but it allows the internal design of the system to be developed independently and provides flexibility in how the system is implemented and updated without effecting interoperability with other systems.
This type of use case is referred to as a black box use case. The black box variety describes the user/system interaction and the functional requirements to achieve the goal, but it leaves the details of the inner workings of the system to the implementer. In contrast, white box use cases also describe the internal details of the system, in addition to the interaction and associated requirements, and are therefore prescriptive because they do not allow the implementer to change the internal system design. Using black box use cases is critical to developing a modular and flexible smart grid “system of systems”. It’s worth noting that many Intelligrid use cases have white box aspects, although IEC PAS 62599 [8] states: “Domain experts should describe the interactions with the ‘black box’ system from outside the system. This is a deliberate policy, because it simplifies the description of requirements, and avoids the trap of making assumptions about how this functionality will be accomplished. In other words, use cases capture the ‘What’ of user requirements, but deliberately avoid addressing the ‘How’ of technologies.”
While this is most likely due to the time and difficulty in producing quality use cases and a lack of trained experts to help with the use case development, effort spent up front on the use cases can save much more time and energy in the later stages of the development and implementation process.

3.1 Discovery of Use Cases and System Boundaries

Goal decomposition can eliminate analysis paralysis that often accompanies modifications to complex systems such as the power grid, because use cases are derived from known high-level goals. Without this practice, domain experts sit down and figure out from their knowledge of the legacy system which use cases they decide will be necessary for the improved system. This extrapolation of the legacy system may not end up supporting some of the high level goals, or it may support them sub-optimally.

Black box use cases eliminate the problem of subsystem boundary determination during analysis, because they are concerned with the value a function delivers, and what it must do to deliver that value, rather than where the functionality is located. In contrast, white box use cases usually embed premature guesses about where boundaries are, because they deal with internal details, where it’s natural to consider partitioning.

System partitioning must eventually be addressed, but it’s desirable to do that after functionality has been defined, rather than at the same time (which confounds two issues that ought to be orthogonal). Clustering is one way to perform that partitioning: that topic will be taken up in a subsequent paper.

4 Testing

Testing of a system’s functionality is important to ensure that the system works and with a system as complex and as important as the smart power grid it is critical. The question is, what do we test for? Traditionally, tests are designed to check that implemented functionality works as expected, but what if this functionality is not aligned with the use cases? The system may pass the tests, but not meet the requirements laid out in the use cases (which can be tied back to the top level goals through the goal decomposition). Since the uses cases are linked to the system goals, designing the tests based directly on the use cases testing will check that the system meets the goals of the stakeholders.

Several kinds of tests are necessary to ensure that the high level goals of the system (and the lower level concrete goals of devices) are met. Unit tests ensure that each single chunk of functionality adheres to its specifications: if the tests are constructed correctly, they verify compliance to the standards the use cases specify. Integration tests ensure that the complete system behaves correctly. Interoperability tests ensure different implementations of the same functionality operate the same way, and interoperate correctly together with other devices. Ideally only unit tests would be needed: Integration and interoperability tests really test the standards and unit tests more than they test products.

All of these tests should be traceable to the requirements specified in use cases: without that traceability, many of the benefits of use cases are lost. Tests can be made traceable to use cases manually (with the assistance of spreadsheets and requirements databases), but that’s so difficult and laborious that most organizations don’t even try. Test traceability to use cases gets even harder when maintenance is taken into account. Automating the creation of the tests directly from the uses cases results in higher quality tests created with less time and effort.

Bidirectional traceability between use cases and tests can be achieved relatively easily with the correct level of automation: one technique is to make the uses cases executable, and provide them with test vectors. Each test vector contains all the data necessary to run a particular scenario. With N test vectors, the scenario can be executed with N different sample data sets. Automation can be achieved by embedding glue code and assertions into the individual steps that make up scenarios. Glue code is in this context a machine interpretable expression of a step. Steps in use cases are primarily for human consumption. Unfortunately natural languages adhere to such complicated rules (and so often break those complicated rules) that it’s difficult to make machines understand human readable steps. Sooner or later advances in technology will remove this difficulty, but for now a human needs to explain to the automation exactly how to carry out each step. In a similar fashion, assertions are machine-readable statements of expected conditions. There now exist open source tools that greatly simplify the application of these ideas.

When automated use cases are applied to a device under test that’s surrounded by mocks, the use case becomes a unit test. Mocks are fake implementations that are pre-loaded with stimuli and assertions that are specific to given use case scenarios and test vectors. The mocks isolate the device under test from the rest of system: this “divide and conquer” strategy vastly simplifies debugging, by minimizing the scope of the test, and excluding other sources of variability (implementations of the neighboring devices). Furthermore the mock for a given component acts like a simplified reference implementation, illustrating how it should behave (yet without the internal details of a real reference implementation).

After all the components have been individually unit tested, mocks can be replaced by real implementations, and the executable use cases become integration tests. When the integration tests are repeated with different implementations, executable use cases become interoperability tests.

5 Conclusion

As we push the limits of the current power delivery system far beyond what it was originally designed for, we need to use both our electricity generation resources and electricity delivery resources more efficiently. By combining the power network with a modern computational system, control system can be put into place that will allow the optimization of many different parameters. Since this smart grid has many subsystems with different levels of complexity controlled by different stakeholder groups with differing needs all needing to interact, it is necessary to use advanced system design techniques.

Using this approach helps ensure that:

· The highest-level goals are linked to systems requirements and therefore the systems requirements are necessary for meeting the system goals.
· The functionality of the system and how they relate to the system requirements is better understood (and therefore more likely to meet the requirements)

· Automated processes can generate systems tests directly from the use case ensuring that requirement and goals are what is being tested for.
Taken together these benefits mean the final system has a much greater chance of meeting the actual goals of the stakeholders. As systems continue to become more complex the risks of traditional ad-hoc development practices become critical and benefits of this approach will grow.

6 Reference List
[1] Smart Grid. Available at: http://www.oe.energy.gov/smartgrid.htm. Accessed on March 26th, 2010.

[2] NIST Framework and Roadmap for Smart Grid Interoperability Standards Release 1.0, January 2010, NIST, Gaithersburg, MD.

[3] Eriksson, H. and Penker, M. (2000), “Business Modeling With UML: Business Patterns at Work”, John Wiley and Sons, Inc., New York, NY.

[4] ibid.

[5] Structuring use cases with goals. Available at: http://alistair.cockburn.us/Structuring+use+cases+with+goals. Accessed on March 26th,

[6] IntelliGrid Use Case Template. Available at: http://smartgrid.epri.com/doc/IntelliGrid_Use_Case_Template.doc. Accessed on March 20th, 2010.

[7] Intelligrid Use Case Repository. Avialable at: http://smartgrid.epri.com/Repository/Repository.aspx. Accessed on March 26th, 2010.

[8] “IntelliGrid methodology for developing requirements for energy systems” Ed. 1.0 International Electrotechnical Commission - Publicly Available Standard 62559 / 29-Jan-2008 / 126 pages

